SIGNAL VA TASVIRLARNI REAL VAQT REJIMIDA QAYTA ISHLASHNING MUAMMOLARI VA YECHIMLARI

Authors

  • Solijonov Muhammadamin Sayotjon o‘g‘li Author
  • Alimqulov Asrorbek Bahodir o‘g‘li Author

Keywords:

Kalit so'zlar: real vaqt signal ishlash, tasvir qayta ishlash, kechikish, parallel hisoblash, FPGA, GPU, embedded systems, latency, DSP, tibbiy tasvir tahlili

Abstract

ANNOTATSIYA 
Maqolada signal va tasvirlarni real vaqt rejimida qayta ishlashning zamonaviy 
muammolari,  ularning  yechim  yo'llari  hamda  amaliy  qo'llanmalari  tahlil  qilingan. 
Hisoblash resurslarining cheklanganligi, kechikishlarni minimallashtirish, ma'lumotlar 
oqimini  boshqarish  kabi  asosiy  muammolar  ko'rib  chiqilgan.  Apparat  va  dasturiy 
ta'minot  optimizatsiyasi,  parallel  ishlov  berish,  sun'iy  intellekt  algoritmlarining 
qo'llanilishi va FPGA, GPU kabi zamonaviy texnologiyalar orqali real vaqt tizimlarini 
samaradorligini  oshirish  usullari  taqdim  etilgan.  Tibbiyot,  transport,  xavfsizlik  va 
sanoat sohasidagi amaliy tatbiqotlar misollari keltirilgan. 

References

ADABIYOTLAR

1. Liu, J. W. S. (2000). Real-Time Systems. Prentice Hall. 580 p.

2. Marwedel, P. (2018). Embedded System Design: Embedded Systems Foundations

of Cyber-Physical Systems. Springer. 446 p.

3. Patel, S., Park, H., Bonato, P., Chan, L., Rodgers, M. (2012). A review of wearable

sensors and systems with application in rehabilitation. Journal of NeuroEngineering

and Rehabilitation, 9(21), 1-17.

4. Gonzalez, R. C., Woods, R. E. (2018). Digital Image Processing. 4th Edition.

Pearson. 1168 p.

5. Woods, R., McAllister, J., Lightbody, G., Yi, Y. (2017). FPGA-based

Implementation of Signal Processing Systems. 2nd Edition. Wiley. 360 p.

6. Kirk, D. B., Hwu, W. W. (2016). Programming Massively Parallel Processors: A

Hands-on Approach. 3rd Edition. Morgan Kaufmann. 544 p.

7. Han, S., Mao, H., Dally, W. J. (2016). Deep Compression: Compressing Deep

Neural Networks with Pruning, Trained Quantization and Huffman Coding.

International Conference on Learning Representations (ICLR).

8. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L. (2016). Edge Computing: Vision and

Challenges. IEEE Internet of Things Journal, 3(5), 637-646.

9. Bradski, G., Kaehler, A. (2008). Learning OpenCV: Computer Vision with the

OpenCV Library. O'Reilly Media. 580 p.

10. LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-

444.

Published

2025-12-12

How to Cite

Solijonov Muhammadamin Sayotjon o‘g‘li, & Alimqulov Asrorbek Bahodir o‘g‘li. (2025). SIGNAL VA TASVIRLARNI REAL VAQT REJIMIDA QAYTA ISHLASHNING MUAMMOLARI VA YECHIMLARI . Ta’lim Innovatsiyasi Va Integratsiyasi, 59(1), 391-395. https://journalss.org/index.php/tal/article/view/9794